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GEC223 Fluid Mechanics I (2 Units)  
Properties of fluids. Fluid statics. Density, pressure, surface tension, viscosity, compressibility, 

etc. Basic conservation laws, friction effects and losses in laminar and turbulent flows in ducts 

and pipes. Dimensional analysis and dynamics similitude, principles of construction and 

operation of selected hydraulic machinery. Hydropower systems. The students should undertake 

laboratory practical in-line with the topics taught. 

 

Dimensional Analysis. 

Dimensional analysis is the process by which the dimensions of equations and physical 

phenomena are examined to give new insight into their solutions. This analysis can be extremely 

powerful. Besides being rather elegant, it can greatly simplify problem solving, and for problems 

where the equations of motion cannot be solved it sets the rules for designing model tests, which 

can help to reduce the level of experimental effort significantly. The principal aim of 

dimensional analysis in fluid mechanics is to identify the important non-dimensional parameters 

that describe any given flow problem. Thus far, we have already encountered a number of non-

dimensional parameters, each of which has a particular physical interpretation. 

Non-dimensional parameters are widely used in fluid mechanics, and there are good reasons for 

this. 

1. Dimensional analysis leads to a reduced variable set. A problem where the \output" variable, 

such as the lift force, is governed by a set of (N - 1) \input" variables (for example, a length, a 

velocity, the density, the viscosity, the speed of sound, a roughness height, etc.), can generally be 

expressed in terms of a total of (N - 3) non-dimensional groups (for example, the lift coefficient, 

the Reynolds number, the Mach number, etc.). 

2. When testing a scale model of an object, such as a car or an airplane, dimensional analysis 

provides the guidelines for scaling the results from a model test to the full- scale. In other words, 

dimensional analysis sets the rules under which full similarity in model tests can be achieved. 

3. Non-dimensional parameters are more convenient than dimensional parameters since they are 

independent of the system of units. In engineering, dimensional equations are sometimes used, 

and they contribute to confusion, errors and wasted effort. Dimensional equations depend on 

using the required units for each of the variables, or the answer will be incorrect. They are 



common in some areas of engineering, such as in the calculation of heat transfer rates and in 

describing the performance of turbo-machines. 

4. Non-dimensional equations and data presentations are more elegant than their dimensional 

counterparts. Engineering solutions need to be practical, but they are always more attractive 

when they display a sense of style or elegance. 

 
Figure 1: Cavitation on a model propeller. The bubbles are generated near the tip of each blade, 

and from a helical pattern in the wake. Photograph courtesy of the Garfield Thomas Water 

Tunnel, Pennsylvania State University. 

 

The most powerful application of dimensional analysis occurs in situations where the governing 

equations cannot be solved. This is often the case in fluid mechanics. Very few exact solutions of 

the equations of motion can be found, and for the vast majority of engineering problems 

involving fluid flows we need to use an approximate analysis where the full equations are 

simplified to some extent, or we need to perform experiments to determine empirically the 

behavior of the system empirically over some range of interest (we may, for example, need to 

understand cavitation on marine propellers, as illustrated in Figure 1). In both cases, dimensional 

analysis plays a critical role in reducing the amount of effort involved and by providing 

physically meaningful interpretations for the answers obtained. Instead of solving the equations 

directly, we try to identify the important variables (such as force, velocity, density, viscosity, the 

size of the object, etc.), arrange these variables in non-dimensional groups, and write down the 

functional form of the flow behavior. This procedure establishes the conditions under which 

similarity occurs, and it always reduces the number of variables that need to be considered. It is 

rare for dimensional analysis to actually yield the analytical relationship governing the behavior. 

Usually, it is just the functional form that can be found, and the actual relationship must be 

determined by experiment. The experiments will also verify if any parameters neglected in the 



analysis were indeed negligible. To see how dimensional analysis works, we first need to define 

what system of dimensions we will use, and what is meant by a “complete physical equation." 

 

 

 

Dimensional Homogeneity 

When we write an algebraic equation in engineering, we are rarely dealing with just numbers. 

We are usually concerned with quantities such as length, force or acceleration. These quantities 

have a dimension (e.g., length or distance) and a unit (e.g., inch or meter). In fluid mechanics, 

the four fundamental dimensions are usually taken to be mass M, length L, time T and 

temperature θ. Some common variables and their dimensions are as follows (the square brackets 

are used as shorthand for “the dimensions of .... are"). 
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Some quantities are already dimensionless. These include pure numbers, angular degrees or 

radians, and strain. The concept of a dimension is important because we can only add or compare 

quantities which have similar dimensions: lengths to lengths, and forces to forces. In other 

words, all parts of an equation must have the same dimension | this is called the principle of 

dimensional homogeneity, and if the equation satisfies this principle it is called a complete 

physical equation. Take, for example, Bernoulli's equation 
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Where B is a constant. We can examine the dimensions of each term in the equation by writing 

the dimensional form of the equation: 
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(the number 
 

 
 is just a counting number with no dimensions). That is,  
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All the parts on the left hand side have the same dimensions of (velocity)
2
, and the equation is 

dimensionally homogeneous. The constant on the right hand side must have the same dimensions 

as the parts on the left, so that in this case the constant B also has the dimensions of (velocity)
2
. 

If we rewrote equation 1 as 
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then in the first case each term has dimensions of length (including B1), and in the second case 

each term has dimensions of pressure (including B2). Thus we have the principle of dimensional 

homogeneity 

 

All physically meaningful equations are dimensionally homogeneous. 

 

To put this another way, in order to measure any physical quantity we must first choose a unit of 

measurement, the size of which depends solely on our own particular preference. This 

arbitrariness in selecting a unit size leads to the following postulate: any equation that describes a 

real physical phenomenon can be formulated so that its validity is independent of the size of the 

units of the primary quantities. Such equations are therefore called complete physical equations. 

All equations given in this book are complete in this sense. When writing down an equation from 

memory, it is always a good idea to check the dimensions of all parts of the equation | just to 

make sure it was remembered correctly. It also helps in verifying an algebraic manipulation or 

proof where it can be used as a quick check on the answer. 

 

This property of dimensional homogeneity can be useful for: 

1. Checking units of equations; 

2. Converting between two sets of units; 

3. Defining dimensionless relationships (see below). 

 

Results of dimensional analysis 
The result of performing dimensional analysis on a physical problem is a single equation. This 

equation relates all of the physical factors involved to one another. This is probably best seen in 

an example. If we want to find the force on a propeller blade we must first decide what might 

influence this force. It would be reasonable to assume that the force, F, depends on the following 

physical properties: 

diameter, d 

forward velocity of the propeller (velocity of the plane), u 



fluid density, 
revolutions per second, N 

fluid viscosity, 
Before we do any analysis we can write this equation: 

F =( d, u, , N, ) 
or 

0 =( F, d, u, , N, ) 

where and 1 are unknown functions. 

These can be expanded into an infinite series which can itself be reduced to 

F =dm up Nr 
where K is some constant and m, p, q, r, s are unknown constant powers. 

From dimensional analysis we 

1. obtain these powers 

2. form the variables into several dimensionless groups 

The value of K or the functions and 1 must be determined from experiment. The knowledge of 

the dimensionless groups often helps in deciding what experimental measurements should be 

taken. 

 

 
1.4 Properties of Fluids 
The properties outlines below are general properties of fluids which are of interest in 

engineering. The symbol usually used to represent the property is specified together with some 

typical values in SI units for common fluids. Values under specific conditions (temperature, 

pressure etc.) can be readily found in many reference books. The dimensions of each unit is also 

give in the MLT system. 

 

Dimensional Analysis 

In engineering the application of fluid mechanics in designs make much of the use of empirical 

results from a lot of experiments. This data is often difficult to present in a readable form. Even 

from graphs it may be difficult to interpret. Dimensional analysis provides a strategy for 

choosing relevant data and how it should be presented. This is a useful technique in all 

experimentally based areas of engineering. If it is possible to identify the factors involved in a 

physical situation, dimensional analysis can form a relationship between them. 

The resulting expressions may not at first sight appear rigorous but these qualitative results 

converted to quantitative forms can be used to obtain any unknown factors from experimental 

analysis. 

 

Dimensions and units 

Any physical situation can be described by certain familiar properties e.g. length, velocity, area, 

volume, acceleration etc. These are all known as dimensions. Course dimensions are of no use 

without a magnitude being attached. We must know more than that something has a length. It 

must also have a standardised unit - such as a meter, a foot, a yard etc. Dimensions are properties 

which can be measured. Units are the standard elements we use to quantify these dimensions. In 

dimensional analysis we are only concerned with the nature of the dimension i.e. its quality not 

its quantity. The following common abbreviations are used: 



length = L 

mass = M 

time = T 

force = F 

temperature = Q 

In this module we are only concerned with L, M, T and F (not Q). We can represent all the 

physical properties we are interested in with L, T and one of M or F (F can be represented by a 

combination of (LTM). These notes will always use the LTM combination. 

 

The following table lists dimensions of some common physical quantities: 

 

Quantity SI Unit Dimension 

velocity m/s ms-1 LT-1. 

acceleration m/s2 ms-2 LT-2. 

force N 
kgm/s2 

Kgms-2 MLT-2. 

energy (or work) Joule J 
Nm, 

Kgm2/s2 

Kgm2s-2 ML2T-2. 

power Watt W 
Nm/s 

Kgm2/s3 

Nms-1 
Kgm2s-3 

ML2T-3. 

pressure ( or 
stress) 

Pascal P, 
N/m2, 

Kg/m/s2 

Nm-2 
Kgm-1s-2 

ML-1T-2 

density Kg/m3 Kgm-3 ML-3 

specific weight N/m3 
Kg/m2/s2 

Kgm-2s-2 ML-2T-2 

relative density a ratio 
no units 

 1 
no dimension 

viscosity N s/m2 
Kg/m s 

N s m-2 
Kg m-1 s-1 

ML-1T-1 

surface tension N/m 
Kg/s2 

Nm-1 
Kg s-2 

MT-2 

 

 

1.4.1 Density 
The density of a substance is the quantity of matter contained in a unit volume of the substance. 

It can be expressed in three different ways. 

 

1.4.1.1 Mass Density (Density or Specific density) 

Mass Density, , (rho) is defined as the mass of substance per unit volume (m/V); at a standard 

temperature and pressure 

Units: Kilograms per cubic metre, kg / m
3
(or kgm

-3
) 

Dimensions: ML
-3

 

Typical values: 



Water = 1000 kgm
-3

, Mercury = 13546 kgm
-3

Air = 1.23 kgm
-3

, Paraffin Oil = 800 kgm
-3

. 

(at pressure =1.013 10
-5

N m
-2

and Temperature = 288.15 K.) 

 

1.4.1.2 Specific Weight 

Specific Weight , (sometimes , and sometimes known as specific gravity) is defined as the 

weight per unit volume at a standard temperature and pressure. or 

The force exerted by gravity, g, upon a unit volume of the substance. The Relationship between 

g and can be determined by Newton‟s 2
nd

Law, since weight per unit volume = mass per unit 

volume g 

g 

Units: Newton‟s per cubic metre, N / m
3
(or N m

-3
) 

Dimensions: ML
-2

T
-2

. 

Typical values: 

Water =9814 N m
-3

, Mercury = 132943 N m
-3

, Air =12.07 N m
-3

, Paraffin Oil =7851 N m
-3

 

 

1.4.1.3 Relative Density 

Relative Density, , is defined as the ratio of mass density of a substance to some standard mass 

density. For solids and liquids this standard mass density is the maximum mass density for water 

(which occurs at 4�c) at atmospheric pressure. 
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Or 

The specific gravity S of a liquid is the ratio of its density to that of water at 4
0
C and the specific 

gravity of a gas is the ratio of its density to that of air at STP; water and air being accepted as the 

reference liquid and gaseous fluid respectively. 

 

   
                         

                 
  
       

      
 

 

Units: None, since a ratio is a pure number. 

Dimensions: 1. 

Typical values: Water = 1, Mercury = 13.5, Paraffin Oil =0.8. 

 

1.4.1.4 Specific Volume 

It is customary in the study of thermodynamics to use the terms „specific volume‟. The specific 

volume is the volume per unit mass of the fluid. It follows, therefore, that the specific volume v 

is the inverse of the mass density ρ;     
 

 
 

 

1.4.2 Viscosity 

Viscosity, , is the property of a fluid, due to cohesion and interaction between molecules, which 

offers resistance to sheer deformation. Different fluids deform at different rates under the same 

shear stress. 

Fluid with a high viscosity such as syrup, deforms more slowly than fluid with a low viscosity 

such as water. 



All fluids are viscous, “Newtonian Fluids” obey the linear relationshipgiven by Newton‟s law of 

viscosity.  

 

     
  

  
, which we saw earlier. 

Where is the shear stress, 

Units N m
-2

; kg m
-1

s
-2

 

Dimensions ML
-1

T 
-2

.
  

  
 is the velocity gradient or rate of shear strain, and has 

Units: radians s
-1

, 

Dimensions t 
-1

 

is the “coefficient of dynamic viscosity” - see below. 

1.4.2.1 Coefficient of Dynamic Viscosity 

The Coefficient of Dynamic Viscosity, , is defined as the shear force, per unit area, (or shear 

stress ), required to drag one layer of fluid with unit velocity past another layer a unit distance 

away. 
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Units: Newton seconds per square metre, N sm
-2

or Kilograms per meter per second, 

kgm
-1

s
-1

.(Although note that is often expressed in Poise, P, where 10 P = 1 kgm
-1

s
-1

.) 

Typical values: 

Water =1.14 10
-3

kgm
-1

s
-1

, Air =1.78 10
-5

kgm
-1

s
-1

, Mercury =1.552 kgm
-1

s
-1

, 

Paraffin Oil =1.9 kgm
-1

s
-1

. 

 

1.4.2.2 Kinematic Viscosity 

Kinematic Viscosity, , is defined as the ratio of dynamic viscosity to mass density. 

 

    
 

 
 

Units: square metres per second, m
2
s

-1
 

(Although note that is often expressed in Stokes, St, where 10
4
St = 1 m

2
s

-1
.) 

Dimensions: L
2
T 

-1
. 

Typical values: 

Water =1.14 10
-6

m
2
s

-1
, Air =1.46 10

-5
m

2
s

-1
, Mercury =1.145 10

-4
m

2
s

-1
, 

Paraffin Oil =2.375 10
-3

m
2
s

-1
. 

 


